Math 261
Spring 2023
Lecture 54

Feb 19-8:47 AM

Class QE $15 \quad f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
find fave for $f(x)=\sin 4 x$ on $[-\pi, \pi]$.

$$
\begin{aligned}
& f_{\text {ave }}=\frac{1}{\pi-(-\pi)} \int_{-\pi}^{\pi} \sin 4 x d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin 4 x d x \\
& u=4 x \\
& d u=4 d x \\
& \frac{d u}{4}=d x \\
& =\frac{1}{2 \pi}\left[\frac{-1}{4} \cos 4 \pi\right]_{-\pi}^{\pi}=\frac{-1}{8 \pi}[\cos 4 \pi-\cos (-4 \pi)] \\
& =\frac{-1}{8 \pi}\left[\begin{array}{ll}
1 & -1
\end{array}\right]=0 \\
& \int_{-a}^{a} \text { ord } x=0 \quad \sin 4 x \text { is an odd function } \\
& \int_{-\pi}^{\pi} \sin 4 x d x=0
\end{aligned}
$$

Class QE 16
find fave for $f(x)=x^{2}$ on $[-a, a]$.
Exact answer only.

$$
\begin{aligned}
f_{a v e}=\frac{1}{a-(-a)} \int_{-a}^{a} x^{2} d x & =\frac{1}{2 a} \int_{-a}^{a} x^{2} d x \\
\int_{-a}^{a} \text { even function } d x=2 \int_{0}^{a} e v e n d x & =\frac{1}{2 a} \cdot 2 \int_{0}^{a} x^{2} d x \\
& \left.=\frac{1}{a} \cdot \frac{x^{3}}{3}\right]_{0}^{a} \\
& =\frac{1}{3 a} \cdot a^{3}=\frac{a^{2}}{3}
\end{aligned}
$$

May 23-8:31 AM
$f(x)=\int_{\sqrt{x}}^{x^{2}} \frac{t^{4}}{t^{8}+1} d t$
find $f(4)$

$$
f(1)=\int_{\sqrt{1}}^{1^{2}} \frac{t^{4}}{t^{8}+1} d t=\int_{1}^{1} \frac{t^{4}}{t^{8}+1} d t=0
$$

$\int_{a}^{a} f(x) d x=0$
Find $f^{\prime}(x)=\frac{\left(x^{2}\right)^{4}}{\left(x^{2}\right)^{8}+1} \cdot 2 x-\frac{(\sqrt{x})^{4}}{(\sqrt{x})^{8}+1} \cdot \frac{1}{2 \sqrt{x}}$

$$
\begin{gathered}
=\frac{\frac{2 x^{9}}{x^{16}+1}-\frac{x^{2}}{\left(x^{4}+1\right) \cdot 2 \sqrt{x}}}{f^{\prime}(1)=\frac{2}{2}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}} \\
f(x) \\
\begin{array}{l}
(1,0) \quad \text { eqn of tan. line } \\
m=f^{\prime}(1)=\frac{3}{4} \quad y-0=\frac{3}{4}(x-1) \\
y=\frac{3}{4} x-\frac{3}{4}
\end{array}
\end{gathered}
$$

Setup OnlY:
Find the volume obtained by rotating the region enclosed by $y=\cos x, y=0$, $x=-\frac{\pi}{2}$, and $x=\frac{\pi}{2}$ about $x=\pi$.

Re. Rect. is Parallel to A.O.R.

Shell

$$
V=\int_{-\pi / 2}^{\pi / 2} 2 \pi \cdot \text { Distance } \cdot \text { Height } d x
$$

$$
\begin{aligned}
x+? & =\pi \\
? & =\pi-x
\end{aligned}
$$

$$
=2 \pi \int_{-\pi / 2}^{\pi / 2}(\pi-x) \cdot \cos x d x \text { Set-up}
$$

May 23-9:20 AM

Class QE 17

$$
f(x)=\int_{2}^{\sqrt{x}} \frac{1}{t^{4}+1} d t
$$

1) find $f(4)=\int_{2}^{\sqrt{4}} \frac{1}{t^{4}+1} d t=\int_{2}^{2} \frac{1}{t^{4}+1} d t=0$
2) find $f^{\prime}(x)=\frac{1}{(\sqrt{x})^{4}+1} \cdot \frac{1}{2 \sqrt{x}}-\frac{1}{2^{4}+1} \cdot 0$

$$
=\frac{7}{x^{2}+1} \cdot \frac{1}{2 \sqrt{x}}=\frac{7}{2 \sqrt{x}\left(x^{2}+1\right)}
$$

3) find $f^{\prime}(4)=\frac{1}{2 \sqrt{4}\left(4^{2}+1\right)}=\frac{7}{2 \cdot 2(17)}=\frac{7}{68}$
